

case	activity	timestamp	status
	435332 Process Invoice	30.01.2012 10:16	Complete
	505425 Process Invoice	27.02.2012 03:33	Complete
	587518 Process Invoice	13.07.2012 03:39	Sheduled
	663605 Process Invoice	07.05.2012 03:39	Sheduled
ŀ	739704 Process Invoice	29.10.2012 10:18	Complete
	815797 Process Invoice	10.05.2012 03:39	Complete
	891890 Process Invoice	09.02.2012 12:17	Complete
	234636 Process Invoice	25.02.2012 03:41	Complete
	353464 Process Invoice	06.03.2012 07:46	Complete
	446447 Process Invoice	03.05.2012 10:17	Complete
	556660 Process Invoice	15.12.2012 13:49	Sheduled
	666873 Process Invoice	30.04.2012 03:38	Complete
	768471 Process Invoice	17.12.2012 09:16	Complete
	452245 Process Invoice	12.02.2012 03:41	Progress
	564453 Process Invoice	02.03.2012 13:07	Complete
	423463 Process Invoice	27.08.2012 03:38	Complete
	451272 Process Invoice	30.10.2012 08:18	Sheduled
	436881 Process Invoice	13.07.2012 03:41	Sheduled
Н	422490 Process Invoice	08.01.2012 05:18	Sheduled
	502079 Process Invoice	06.05.2012.04:40	Sheduled
	502121 Process Invoice	06.05.2012 08:17	Complete
	507379 Process Invoice	07.05.2012 05:18	Progress
-	201016	64 907 907 507 70	

Data-driven Robotic Process Automation Exploiting Process Mining

Presented by: Najah Mary El-Gharib, Ph.D. Candidate, nelgh031@uottawa.ca

Supervisor: Dr. Daniel Amyot

Today's Agenda

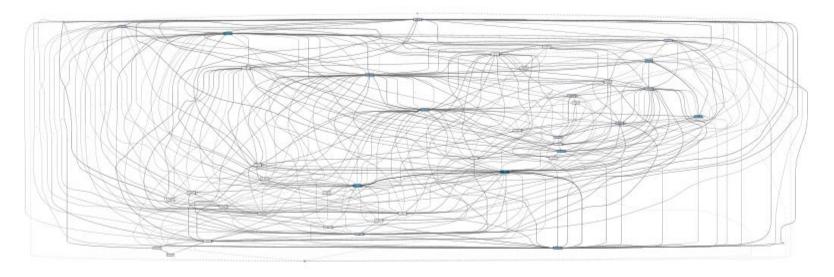
- 1) Problem Definition
- 2) Introduction to Process Mining
- 3) Introduction to Robotic Process Automation
- 4) Research Questions, Methodology, and Proposed Method
- 5) Canadian Process Mining Community

1. Problem Definition

Problem Definition

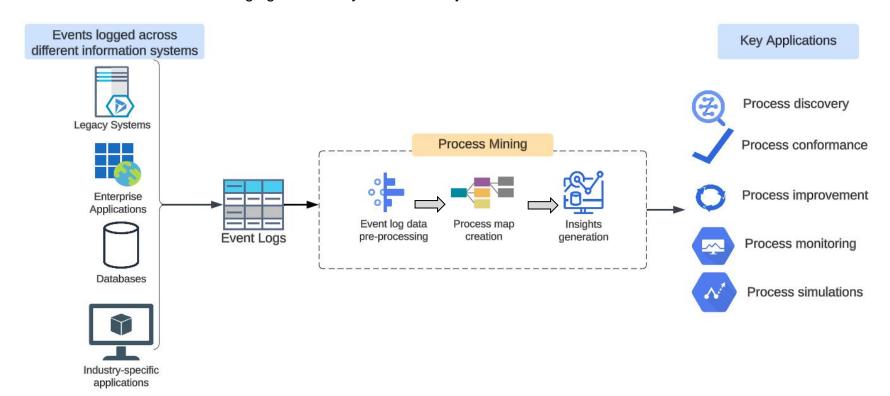
Organizations are moving towards standard and sustainable processes to cut costs, improve efficiency, and drive their digital transformation plans.

In the past 5 years there has been a steep increase in the use of Robotic Process Automation (RPA).

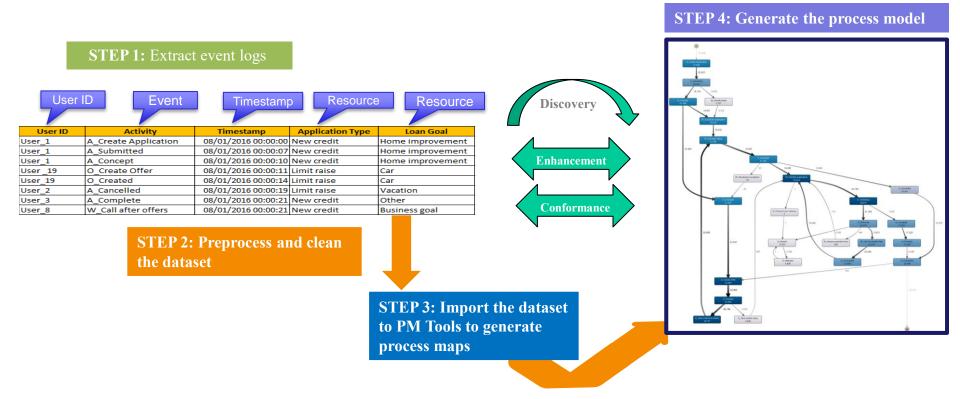


Large amount of guess work in assessing the processes that can be automated.

Understanding the processes is the key to automate them properly.

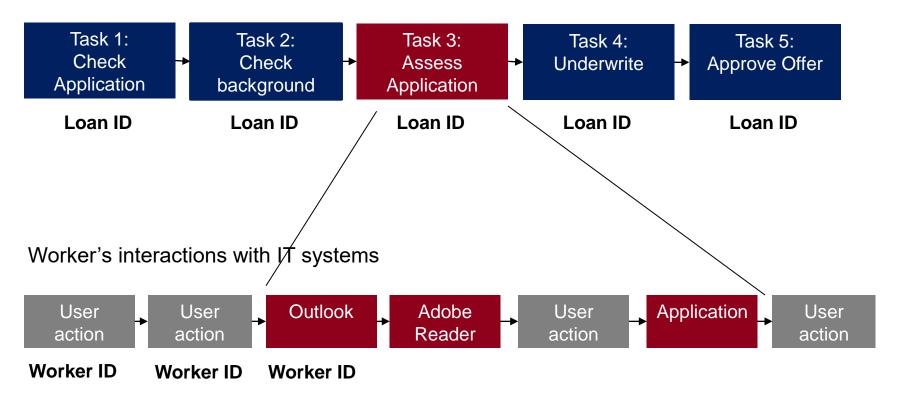

2. What is Process Mining?

Understanding Process Mining


Process mining techniques leverage event log data to extract insights.

Process mining is a fact-based approach to help discover, monitor, and optimize as-is processes by analyzing process-related information from event logs generated by information systems.

What is Process Mining?


Why Process Mining?

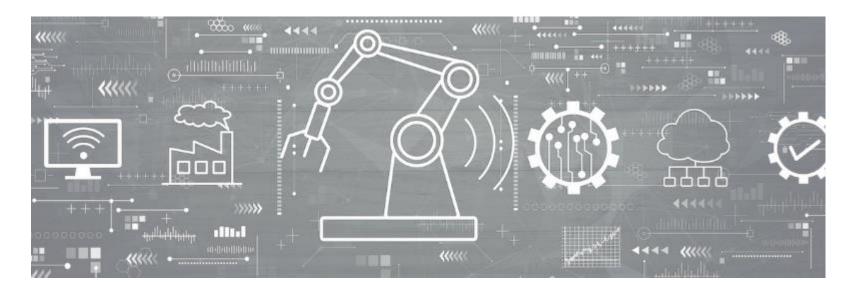
Processes, Tasks, and User Interactions

Loan origination process instance

Analyzing Task UI Logs with Process Mining

User Workstations

- Task Mining probes are deployed on user workstations to gather user interactions (UI) logs on performed tasks using screenshot and image processing.
- Raw UI data is pushed to a Data Processing Server.


Data Preprocessing Server

- The Task Mining configuration module allows analysts to provide input for data processing for data preprocessing.
- The Task Mining data processing engine preprocesses the raw UI data using the configuration.

Process Mining Tool

- Processed UI logs are fed into the process mining tool.
- This data can be used to discover the underlying routines inside each task, analyze performance and compliance at the sub-task level, analyze worker performance, etc.

3. Introduction to Robotic Process Automation

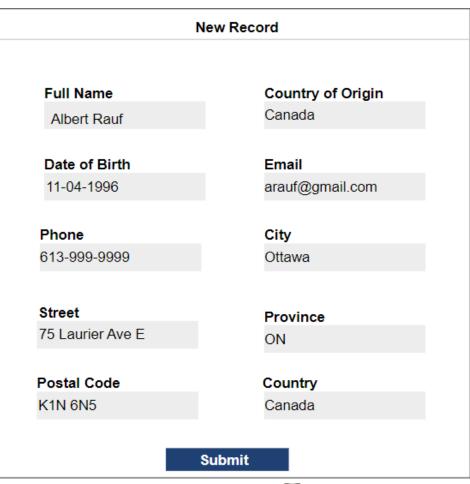
What is Robotic Process Automation?

Robotic Process Automation (RPA) is an emerging technology that allows organizations to automate repetitive clerical work by executing scripts (RPA bots) that encode sequences of fine-grained interactions with Web and desktop applications.

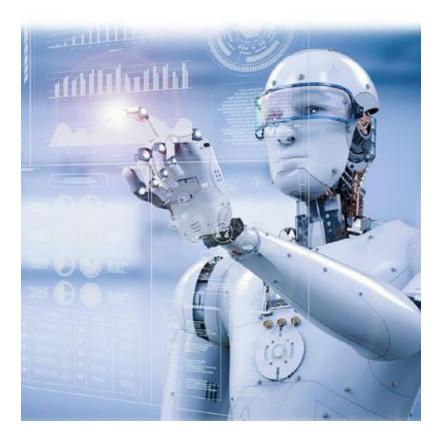
RPA robots utilize the user interface and capture data and manipulate applications just like humans do.

Attended automation Robots that

collaborate with a human worker


Unattended automation

Stand-alone robots that perform workflows


Automatable Task Example

Α	В	
First Name	Albert	
Last Name	Rauf	
Date of Birth	11/04/1986	_
Phone Number	613 999 9999	
Email	arauf@gmail.com	
Country of Origin	Canada	
Address	75 Laurier Ave E, Ottawa, ON K1N 6N5	

Why Robotic Process Automation?

- Error rates reduction
- Cycle time reduction
- Flow standardization (consistency)
- Cost efficiency

Processes best-suited for RPA

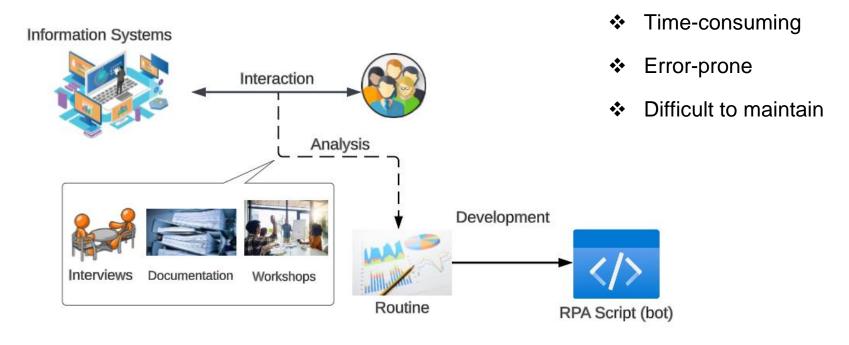
- □ Repetitive
- □ Rule-based
- ☐ Structured

How to conduct an RPA Project?

- Determine which routines are good candidates to be automated
- Model the selected routines in the form of flowchart diagrams that define the behavior of a software robot
- Develop each modeled routine by generating the software code required to enact the associated software robot on a target computer system
- 4) Deploy the software robots in their environment to perform their actions
- Maintain the routines over time to eventually enhance their behavior

How to conduct an RPA Project?

- Determine which routines are good candidates to be automated
- 2) Model the selected routines in the form of flowchart diagrams that define the behavior of a software robot
- Develop each modeled routine by generating the software code required to enact the associated software robot on a target computer system
- 4) Deploy the software robots in their environment to perform their actions
- 5) Maintain the routines over time to eventually enhance their behavior



Classical RPA Analysis and Development

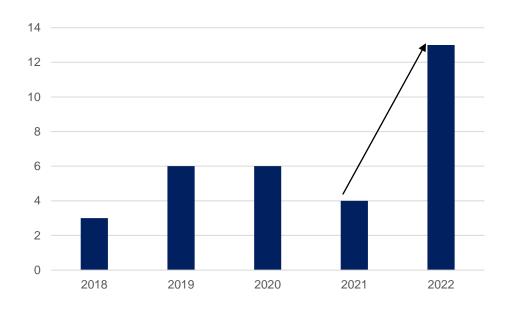
RPA with Process Mining

- ✓ Data-driven
- √ Objective
- ✓ Shortened time-frames

4. Research Questions, Methodology, and Proposed Method

Research Questions

- RQ1: How are process mining techniques applied to accelerate and improve robotic process automation implementations?
- RQ2: Which tools are used to apply both process mining and robotic process automation in an integrated way?
- RQ3: What are the challenges encountered when combining process mining with robotic process automation?


("process mining" OR "process discovery")

AND

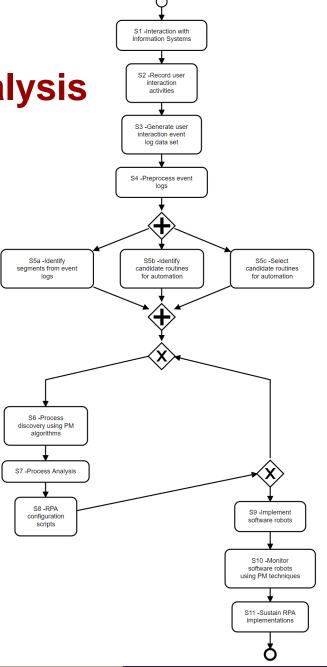
("robotic process automat*" OR "intelligent process automat*" OR RPA OR "segmentat*" OR "UI log*" OR "user inter* log*" OR "task mining")

Significant Increase in Publications in Last Year

There is a steady increase in the number of publication in this domain, especially in 2022, which indicates a raining interest in combined use of process mining and RPA.

Systematic Literature Review Analysis

Techniques and Algorithms


- · Collecting interactions with information systems
- Recording activities and gathering event logs
- Preprocessing event logs
- · Process discovery and analysis
- · RPA configuration and sustainability
- PM and RPA from Start to End

Tools

- Open-source tools: ProM, Apromore
- Commercial tools: Celonis, UiPath Process Mining, Disco

Challenges

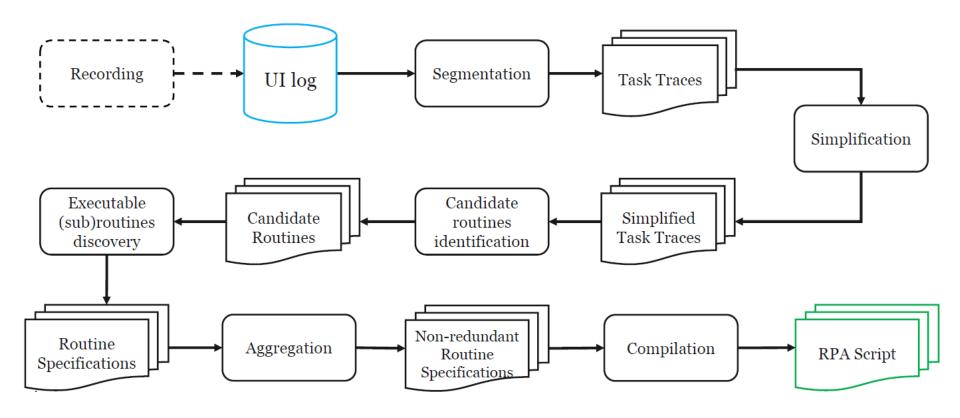
- · Process mining challenges
- Robotic process automation challenges
- Intersection of process mining and robotic process mining challenges

Process Mining and RPA Challenges

Process Mining Challenges

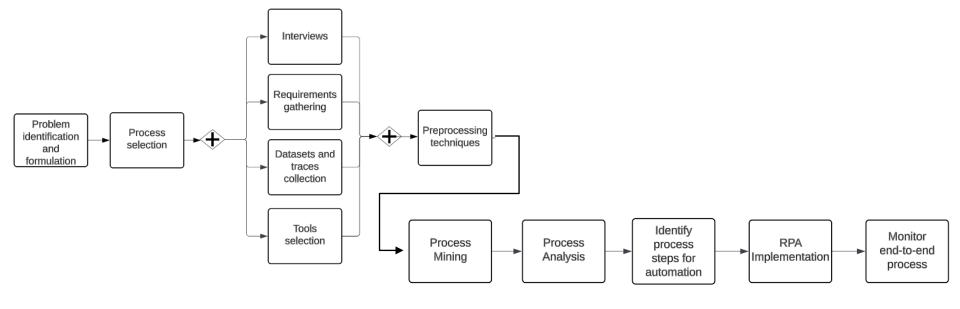
- Dealing with noisy event logs
- Handling complex events logs with a variety of characteristics
- Improving model presentation for less structured processes
- Handling the absence of reliable unique identifiers
- Managing the granularity of event logs
- Compiling event logs
- Matching user interaction logs
- Collecting high quality data

PM and RPA


- Recording user interaction logs
- Generating event logs from User Interfaces
- Filtering noise
- Finding frequent patterns
- Extracting routines
- Segmenting event logs
- Simplifying event logs

RPA Challenges

- · Identifying automation routines
- Updating RPA scripts as processes change
- Human monitoring when robots fail
- Handling exceptions in processes
- Automating processes with many variants
- Intra-routine and inter-routine selflearning
- Automatically generating workflows from RPA logs
- Developing multiple dependent robots


Robotic Process Mining

Leno, V., Polyvyanyy, A., Dumas, M., La Rosa, M., & Maggi, F. M. (2021). Robotic process mining: vision and challenges. Business & Information Systems Engineering, 63(3), 301-314.

Proposed Method (Work in Progress)

Evaluation plan consists of a case study (or more). The plan is to collaborate with an industry partner.

Process Mining is a Key Enabler for RPA

Process mining and RPA technologies are becoming a key element of digital transformation efforts.

Provides in-depth look and end-to-end perspective needed to improve processes and make sure automations deliver results

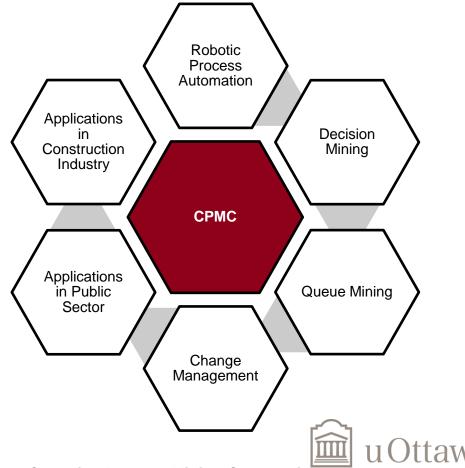
Helps improve processes before automating them to get the maximum benefit Identifies the most valuable, impactful places to implement automation

Continuously monitors automation performance and ROI

Helps build an automation program on facts, data, and ongoing measurement

Links business rules with automation assessment which drives better outcomes

5. Canadian Process Mining Community



Canadian Process Mining Community

Brings together professors, students, and researchers in the field of process mining.

- University of Ottawa
- York University
- University of Toronto
- Concordia University
- McGill University
- Memorial University of Newfoundland

uOttawa.ca

Thank You!

LinkedIn: Najah El-Gharib

Email: nelgh031@uottawa.ca

